Hom 和 Tensor ¶
定理
设 \(A, B, C, D\) 是环 \(R\) 上的模,\(\varphi: A \to C, \psi: B \to D\) 是 \(R\)- 模同态,则映射
是阿贝尔群的群同态 .
通常将 \(\theta\) 写作 \(\operatorname{Hom}_R(\varphi, \psi)\),并且称作由 \(\varphi\) 和 \(\psi\) 诱导的同态(induced homomorphism)。注意对于同态 \(\varphi_1: E \to C, \varphi_2: C \to A, \psi_1: B \to D, \psi_2: D \to F\),我们有
诱导同态有两个特殊情况。如果 \(B = D\) 且 \(\psi = 1_B\),则诱导同态 \(\operatorname{Hom}_R(\varphi, 1_B): \operatorname{Hom}_R(A, B) \to \operatorname{Hom}_R(C, B)\) 为 \(f \mapsto f \varphi\),记作 \(\bar{\varphi}\)。如果 \(A = C\) 且 \(\varphi = 1_A\),则诱导同态 \(\operatorname{Hom}_R(1_A, \psi): \operatorname{Hom}_R(A, B) \to \operatorname{Hom}_R(A, D)\) 为 \(f \mapsto \psi f\),记作 \(\bar{\psi}\)。
下面考察 \(\operatorname{Hom}_R\) 与正合序列相关的性质 .
定理
设 \(R\) 是环,则 \(0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0\) 是 \(R\)- 模的正合序列等价于对于每个 \(R\)- 模 \(D\),序列 \(0 \to \operatorname{Hom}_R(D, A) \xrightarrow{\bar{\varphi}} \operatorname{Hom}_R(D, B) \xrightarrow{\bar{\psi}} \operatorname{Hom}_R(D, C)\) 是阿贝尔群的正合序列 .
证明
\((\Rightarrow)\) 若 \(0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0\) 是正合的,我们需要证明:
(i) \(\operatorname{Ker} \bar{\varphi} = 0\);(ii) \(\operatorname{Im} \bar{\varphi} \subset \operatorname{Ker} \bar{\psi}\);(iii) \(\operatorname{Ker} \bar{\psi} \subset \operatorname{Im} \bar{\varphi}\).
(i) \(f \in \operatorname{Ker} \bar{\varphi} \Rightarrow \varphi f = 0 \Rightarrow \varphi f(x) = 0, \forall x \in D\). 因为 \(0 \to A \xrightarrow{\varphi} B\) 正合,由 \(\varphi\) 的单射性可知 \(f(x) = 0, \forall x \in D \Rightarrow f = 0\). 从而 \(\operatorname{Ker} \bar{\varphi} = 0\).
(ii) 由正合性可知 \(\operatorname{Im} \varphi = \operatorname{Ker} \psi\),所以 \(\psi \varphi = 0\),于是 \(\bar{\psi} \bar{\varphi} = \overline{\psi \varphi} = 0\). 因此 \(\operatorname{Im} \bar{\varphi} \subset \operatorname{Ker} \bar{\psi}\).
(iii) \(g \in \operatorname{Ker} \bar{\psi} \Rightarrow \psi g = 0 \Rightarrow \operatorname{Im} g \subset \operatorname{Ker} \psi = \operatorname{Im} \varphi\). 因为 \(\varphi\) 是单同态,从而 \(\varphi: A \to \operatorname{Im} \varphi\) 是同构. 如果 \(h\) 是复合映射 \(D \xrightarrow{g} \operatorname{Im} g \subset \operatorname{Im} \varphi \xrightarrow{\varphi^{-1}} A\),则 \(h \in \operatorname{Hom}_R(D, A)\) 且 \(\bar{\varphi}(h) = \varphi h = g\). 从而 \(\operatorname{Ker} \bar{\psi} \subset \operatorname{Im} \bar{\varphi}\).
\((\Leftarrow)\) 若对于每个 \(R\)-模 \(D\),序列 \(0 \to \operatorname{Hom}_R(D, A) \xrightarrow{\bar{\varphi}} \operatorname{Hom}_R(D, B) \xrightarrow{\bar{\psi}} \operatorname{Hom}_R(D, C)\) 是阿贝尔群的正合序列,那么:
(i) 取 \(D = \operatorname{Ker} \varphi\),且 \(i: D \to A\) 是包含映射。由 \(\operatorname{Ker} \bar{\varphi} = 0\),\(\bar{\varphi}(i) = \varphi i = 0\), 从而 \(0 = D = \operatorname{Ker} \varphi\). 因此序列 \(0 \to A \xrightarrow{\varphi} B\) 是正合的.
(ii) 取 \(D = A\),因为 \(\operatorname{Ker} \bar{\psi} = \operatorname{Im} \bar{\varphi}\),所以 $ 0 = \bar{\psi} \bar{\varphi}(1_A) = \psi \varphi = 0$. 因此 \(\operatorname{Im} \varphi \subset \operatorname{Ker} \psi\).
(iii) 取 \(D = \operatorname{Ker} \psi\),且 \(j: D \to B\) 是包含映射。由于 \(0 = \psi j = \bar{\psi}(j)\) 以及 \(\operatorname{Ker} \bar{\psi} = \operatorname{Im} \bar{\varphi}\),所以存在 \(f: D \to A\) 使得 \(j = \bar{\varphi}(f) = \varphi f\). 所以对于任意 \(x \in D\),有 \(x = j(x) = \varphi f(x) \in \operatorname{Im} \varphi\),于是 \(\operatorname{Ker} \psi = D \subset \operatorname{Im} \varphi\). 因此 \(\operatorname{Ker} \psi = \operatorname{Im} \varphi\). 从而序列 \(0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0\) 是正合的.
命题
设 \(R\) 是环,则 \(A \xrightarrow{\theta} B \xrightarrow{\zeta} C \to 0\) 是 \(R\)- 模的正合序列等价于对于每个 \(R\)- 模 \(D\),序列 \(0 \to \operatorname{Hom}_R(C, D) \xrightarrow{\bar{\zeta}} \operatorname{Hom}_R(B, D) \xrightarrow{\bar{\theta}} \operatorname{Hom}_R(A, D)\) 是阿贝尔群的正合序列 .
命题
关于环 \(R\) 上模的以下条件等价:
(i) \(0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0\) 是分裂的 \(R\)-模正合序列;
(ii) 对于每个 \(R\)-模 \(D\),序列 \(0 \to \operatorname{Hom}_R(D, A) \xrightarrow{\bar{\varphi}} \operatorname{Hom}_R(D, B) \xrightarrow{\bar{\psi}} \operatorname{Hom}_R(D, C) \to 0\) 是分裂的阿贝尔群正合序列;
(iii) 对于每个 \(R\)-模 \(D\),序列 \(0 \to \operatorname{Hom}_R(C, D) \xrightarrow{\bar{\psi}} \operatorname{Hom}_R(B, D) \xrightarrow{\bar{\varphi}} \operatorname{Hom}_R(A, D) \to 0\) 是分裂的阿贝尔群正合序列.
定理
关于环 \(R\) 上的模 \(P\) 的以下条件是等价的:
(i) \(P\) 是投射模;
(ii) 如果 \(\psi: B \to C\) 是 \(R\)-模满同态,则 \(\bar{\psi}: \operatorname{Hom}_R(P, B) \to \operatorname{Hom}_R(P, C)\) 是阿贝尔群的满同态;
(iii) 如果 \(0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0\) 是 \(R\)-模短正合序列,则 \(0 \to \operatorname{Hom}_R(P, A) \xrightarrow{\bar{\varphi}} \operatorname{Hom}_R(P, B) \xrightarrow{\bar{\psi}} \operatorname{Hom}_R(P, C) \to 0\) 是阿贝尔群的短正合序列.
命题
关于环 \(R\) 上的模 \(J\) 的以下条件是等价的:
(i) \(J\) 是内射模;
(ii) 如果 \(\theta: A \to B\) 是 \(R\)-模单同态,则 \(\bar{\theta}: \operatorname{Hom}_R(B, J) \to \operatorname{Hom}_R(A, J)\) 是阿贝尔群的满同态;
(iii) 如果 \(0 \to A \xrightarrow{\theta} B \xrightarrow{\zeta} C \to 0\) 是 \(R\)-模短正合序列,则 \(0 \to \operatorname{Hom}_R(C, J) \xrightarrow{\bar{\zeta}} \operatorname{Hom}_R(B, J) \xrightarrow{\bar{\theta}} \operatorname{Hom}_R(A, J) \to 0\) 是阿贝尔群的短正合序列.
定理
设 \(A\), \(B\), \(\{A_i \mid i \in I\}\), \(\{B_j \mid j \in J\}\) 均是环 \(R\) 上的模,则有如下的阿贝尔群同构:
(i) \(\operatorname{Hom}_R(\sum_{i \in I} A_i, B) \cong \prod_{i \in I} \operatorname{Hom}_R(A_i, B)\);
(ii) \(\operatorname{Hom}_R(A, \sum_{j \in J} B_j) \cong \prod_{j \in J} \operatorname{Hom}_R(A, B_j)\).
定义
设 \(R\) 和 \(S\) 均是环,阿贝尔群 \(A\) 被称作 \(R\)-\(S\) 双重模(bimodule),如果 \(A\) 同时是左 \(R\)- 模和右 \(S\)- 模,且对于任意 \(r \in R, s \in S, a \in A\),有 \(r(as) = (ra)s\). 有时写作 \(_R A_S\) 以表示 \(A\) 是 \(R\)-\(S\) 双重模 . 类似地,用 \(_R B\) 表示 \(B\) 是左 \(R\)- 模,用 \(C_S\) 表示 \(C\) 是右 \(S\)- 模 .
定理
设 \(R\) 和 \(S\) 是环,\(_R A\), \(_R B_S\), \(_R C_S\) 和 \(D_S\) 如上所述,则:
(i) \(\operatorname{Hom}_R(A, B)\) 是右 \(S\)-模,其中 \(S\) 的作用为 \((fs)(a) = (f(a))s, s \in S, a \in A, f \in \operatorname{Hom}_R(A, B)\);
(ii) 如果 \(\varphi: A \to A'\) 是左 \(R\)-模同态,则诱导映射 \(\bar{\varphi}: \operatorname{Hom}_R(A', B) \to \operatorname{Hom}_R(A, B)\) 是右 \(S\)-模同态;
(iii) \(\operatorname{Hom}_R(C, D)\) 是左 \(S\)-模,其中 \(R\) 的作用为 \((sg)(c) = (g(cs)), s \in S, c \in C, f \in \operatorname{Hom}_R(C, D)\);
(iv) 如果 \(\psi: D \to D'\) 是左 \(R\)-模同态,则诱导映射 \(\bar{\psi}: \operatorname{Hom}_R(C, D) \to \operatorname{Hom}_R(C, D')\) 是左 \(R\)-模同态.
定理
若 \(A\) 是含幺环 \(R\) 上的幺作用左 \(R\)- 模,则有左 \(R\)- 模同构 \(A \cong \operatorname{Hom}_R(R, A)\).
证明
因为 \(R\) 是 \(R\)-\(R\) 双重模,由上给出 \(\operatorname{Hom}_R(R, A)\) 的左 \(R\)- 模结构,验证映射
是 \(R\)- 模同态 . 定义映射 \(\psi: A \to \operatorname{Hom}_R(R, A), a \mapsto f_a\),其中 \(f_a(r) = ra\). 验证 \(\psi\) 是良定义的,并且是 \(R\)- 模同态,且 \(\varphi \psi = 1_A, \psi \varphi = 1_{\operatorname{Hom}_R(R, A)}\),从而 \(\varphi\) 是 \(R\)- 模同构 .
令 \(A\) 是环 \(R\) 上的左 \(R\)- 模,因为 \(R\) 是 \(R\)-\(R\) 双重模,由上可知 \(\operatorname{Hom}_R(A, R)\) 是右 \(R\)- 模,称作 \(A\) 的对偶模(dual module),并表示为 \(A^*\). \(A^*\) 中的元素也被称作线性泛函(linear functional)。类似地,如果 \(B\) 是右 \(R\)- 模,则 \(B\) 的对偶模 \(B^*\) 是左 \(R\)- 模 \(\operatorname{Hom}_R(B, R)\).