跳转至

Some Diophantine Equations

1. \(x^2 + y^2 = z^2\)

Theorem

Assume \((x, y, z)\) coprime, \(x\) odd, \(y\) even, \(x, y, z >0\), and \((x, y, z)\) is a solution of eq1. Then there exists \(m, n \in \mathbb{Z}, m > n > 0\) such that

\[ x = m^2-n^2, y = 2mn, z = m^2+n^2. \]
Proof

\(z^2 = x^2+y^2 = (x+y\sqrt{-1})(x-y\sqrt{-1})\).
(i) If \(d \mid (x+y\sqrt{-1}), d \mid (x-y\sqrt{-1})\), then \(d^2 \mid (x+y\sqrt{-1})(x-y\sqrt{-1}) = z^2\). So \(N(d^2) \mid N(z^2)\). \(N(d)\) is odd and \(N(d) \neq 2\).
(ii) The factoriation of 2. \(2 = -\sqrt{-1}(1+\sqrt{-1})^2\) and \(N(1+\sqrt{-1}) = 2\). So \((d, z) = 1\).
(iii) \(d \mid (x+y\sqrt{-1}), d \mid (x-y\sqrt{-1}) \rightarrow d \mid 2x, d \mid 2y\). \(d\) and 2 are coprime, so \(d \mid x, d \mid y\). But \(x, y\) are coprime, so \(d\) is a unit.
(iv) Suppose \(z\) can be factorized like this: \(z = p_1 \cdots p_r\)(allow repeated), then \(z^2 = p_1^2 \cdots p_r ^2\). Therefore exists one permutation such that \(x+y\sqrt{-1} = p_1^2 \cdots p_t^2, x-y\sqrt{-1} = p_{t+1}^2 \cdots p_r^2\). Let \(x+y\sqrt{-1} = (m+n\sqrt{-1})^2 \cdot u, x-y\sqrt{-1} = (m-n\sqrt{-1})^2 \cdot u^{-1}, u \in \mathbb{Z}[\sqrt{-1}]^{\times}\). We need to discuss the choice of \(u\).
(v) If \(u = 1\), then \(x = m^2-n^2, y = 2mn, z = m^2+n^2\). If \(u = -1\), then \(x = n^2-m^2, y = -2mn, z = m^2+n^2\), but we set \(m > n > 0\). Contradiction. If \(u = \sqrt{-1}\), then \(x = -2mn, y = m^2-n^2\)

2. \(a^2 + b^2 = c^3\)

Theorem

Integer solution of \(a^2+b^2=c^3\) with \((a, b) = 1\) are given by

\[ a = m^3 - 3mn^2, b = 3m^2n - n^3, c = m^2 + n^2. \]

where \((m, n) = 1\) and \(m \not \equiv n \pmod 2\).

3. \(y^2 = x^3-1\)

Solution

Factorize this equation on \(\mathbb{Z}[\sqrt{-1}]\).
\(x^3 = y^2 + 1 = (y+\sqrt{-1})(y-\sqrt{-1})\).

4. \(y^2 = x^3-4\)

5. \(x^2 + y^2 = p\)

Lemma

(i) If \(p \equiv 1 \pmod 4\), then \(x^2 \equiv -1 \pmod p\) has a solution.
(ii) \(x^2 \equiv -1 \pmod p\) has a solution \(\Rightarrow\) \(p\) is not a prime in \(\mathbb{Z}[\sqrt{-1}]\).

Proof

(i) \(a^{p - 1} - 1 = (a^{\frac{p - 1}{2}} - 1)(a^{\frac{p - 1}{2}} + 1)\).
\(\bmod p\) on both side, we have \(a^{p - 1} - 1 = (a^{\frac{p - 1}{2}} - 1)(a^{\frac{p - 1}{2}} + 1) \pmod p\).
According to Fermat's little theorem, \(a^{p - 1} - 1 \equiv 0 \pmod p\) has exactly \(p - 1\) solutions.
So \(a^{\frac{p - 1}{2}} - 1 \equiv 0 \pmod p\) has exactly \(\frac{p - 1}{2}\) solutions, so does \(a^{\frac{p - 1}{2}} + 1 \equiv 0 \pmod p\). And then \((a^{\frac{p - 1}{4}})^2 \equiv -1 \pmod p\). So \(x^2 \equiv -1 \pmod p\) has a solution if \(p \equiv 1 \pmod 4\).

(ii) \(p \mid x^2 + 1 = (x + \sqrt{-1})(x - \sqrt{-1})\). If \(p\) is a prime in \(\mathbb{Z}[\sqrt{-1}]\), then \(p \mid (x + \sqrt{-1})\) or \(p \mid (x - \sqrt{-1})\), which means \(p(a + b\sqrt{-1}) = x \pm \sqrt{-1}\), then \(pb = \pm 1\). But \(p\) is a prime in \(\mathbb{Z}\). Contradiction!

Example

Question

For which \(p > 3\), \(x^2 + x + 1 \equiv 0 \pmod p\) has a solution?

\(x^2 + x + 1 \equiv 0 \pmod p\) has a solution \(\Leftrightarrow\) there exists \(a, a^3 - 1 \equiv 0 \pmod p\) , and according to Fermat's little theorem, \(a^{p - 1} - 1 \equiv 0 \pmod p\).
If \(3 \not \mid p - 1\), then according to Bezout's theorem, there exists \(u, v \in \mathbb{Z}\) such that \(3u + (p - 1)v = 1\). So \(a^1 = a^{3u + (p - 1)v} = a^{3u} \cdot a^{(p - 1)v} \equiv a^{3u} \equiv 1 \pmod p\). Contradiction!
If \(3 \mid p - 1\):

Theorem

If \(p\) is a prime, then \((\mathbb{Z}/p\mathbb{Z})^{\times}\) has a generator \(g\). (The proof is in Lec4)

Then is obvious that \(a = g^{\frac{p - 1}{3}}\) is a solution of \(x^3 - 1 \equiv 0 \pmod p\).
So \(x^2 + x + 1 \equiv 0 \pmod p\) has a solution iff \(3 \mid p - 1\).

Actually, this example is related to the cyclotomic polynomial \(\Phi_p(x)\). \(\Phi_3(x) = x^2 + x + 1\) has a root in \(\mathbb{Z}/p\mathbb{Z}\) iff \(3 \mid p - 1\). Then we can consider that \(\Phi_p(x)\) has a root in \(\mathbb{Z}/q\mathbb{Z}\) iff \(p \mid q - 1\). And \(\Phi_4(x) = x^2 + 1\) has a root in \(\mathbb{Z}/p\mathbb{Z}\) iff \(4 \mid p - 1\), which means \(p \equiv 1 \pmod 4\), is the lemma we proved before.

Theorem

Let \(p\) be an odd prime.
(i) \(x^2 + y^2 = p\) has a solution iff \(p \equiv 1 \pmod 4\).
(ii) Up to sign and order, the solution, if exists, must be unique.

Proof

(i) (\(\Rightarrow\)) Because \(p\) is an odd prime, so \(x, y\) are one odd and one even. Without loss of generality, we assume \(x\) is odd and \(y\) is even, then \(x^2 \equiv 1 \pmod 4, y^2 \equiv 0 \pmod 4\). So \(x^2 + y^2 = p \equiv 1 \pmod 4\).
(\(\Leftarrow\)) If \(p \equiv 1 \pmod 4\), then \(x^2 \equiv -1 \pmod p\) has a solution. So \(p\) is not a prime in \(\mathbb{Z}[\sqrt{-1}]\). Thus, \(p\) is reducible in \(\mathbb{Z}[\sqrt{-1}]\). Suppose \(p = \alpha \beta\), \(\alpha, \beta \not \in \mathbb{Z}[\sqrt{-1}]^{\times}\). Then \(p^2 = N(p) = N(\alpha)N(\beta)\). So \(N(\alpha) = N(\beta) = p\). Thus we know \(\beta = \overline{\alpha}\), so suppose \(\alpha = x + y\sqrt{-1}\), then \(\beta = x - y\sqrt{-1}\). So \(x^2 + y^2 = p\).